Publicaciones

Denis Parra

RL1, Publisher: arXiv, Link>

AUTHORS

Vladimir Araujo, Denis Parra, Andrés Carvallo, Camilo Thorne

ABSTRACT

The success of pretrained word embeddings has motivated their use in the biomedical domain, with contextualized embeddings yielding remarkable results in several biomedical NLP tasks. However, there is a lack of research on quantifying their behavior under severe "stress" scenarios. In this work, we systematically evaluate three language models with adversarial examples -- automatically constructed tests that allow us to examine how robust the models are. We propose two types of stress scenarios focused on the biomedical named entity recognition (NER) task, one inspired by spelling errors and another based on the use of synonyms for medical terms. Our experiments with three benchmarks show that the performance of the original models decreases considerably, in addition to revealing their weaknesses and strengths. Finally, we show that adversarial training causes the models to improve their robustness and even to exceed the original performance in some cases.


80 visualizaciones Ir a la publicación

RL1, Publisher: Computers and Electronics in Agriculture, Link>

AUTHORS

Diego Rojo, Katrien Verbert, Nyi Nyi Htun, Robin De Croon, Denis Parra

ABSTRACT

Decision support systems have become increasingly popular in the domain of agriculture. With the development of automated machine learning, agricultural experts are now able to train, evaluate and make predictions using cutting edge machine learning (ML) models without the need for much ML knowledge. Although this automated approach has led to successful results in many scenarios, in certain cases (e.g., when few labeled datasets are available) choosing among different models with similar performance metrics is a difficult task. Furthermore, these systems do not commonly allow users to incorporate their domain knowledge that could facilitate the task of model selection, and to gain insight into the prediction system for eventual decision making. To address these issues, in this paper we present AHMoSe, a visual support system that allows domain experts to better understand, diagnose and compare different regression models, primarily by enriching model-agnostic explanations with domain knowledge. To validate AHMoSe, we describe a use case scenario in the viticulture domain, grape quality prediction, where the system enables users to diagnose and select prediction models that perform better. We also discuss feedback concerning the design of the tool from both ML and viticulture experts.


121 visualizaciones Ir a la publicación

RL1, Publisher: Revista Bits de Ciencia, Link>

AUTHORS

Denis Parra

ABSTRACT

Corría el año 2010 y yo cursaba mi doctorado enfocado en personalización y sistemas de recomendación en la Universidad de Pittsburgh, ubicada en la ciudad homónima (Pittsburgh) al oeste del estado de Pennsylvania en Estados Unidos. Las técnicas más avanzadas de mi tema de investigación eran del área conocida como Aprendizaje Automático (en inglés, Machine Learning), por lo que sentía la necesidad de tomar un curso avanzado para completar mi formación. En el semestre de otoño finalmente me inscribí en el curso de Aprendizaje Automático, y gracias a un convenio académico pude cursarlo en la universidad vecina, Carnegie Mellon University. Yo estaba realmente emocionado de tomar un curso en un tema de tan creciente relevancia en unas de las mejores universidades del mundo en el área de computación.


60 visualizaciones Ir a la publicación

RL1, Publisher: Link>

AUTHORS

Denis Parra, Pablo Pino, Cecilia Besa, Claudio Lagos

ABSTRACT

We address the task of automatically generating a medical report from chest X-rays. Many authors have proposed deep learning models to solve this task, but they focus mainly on improving NLP metrics, such as BLEU and CIDEr, which are not suitable to measure clinical correctness in clinical reports. In this work, we propose CNN-TRG, a Template-based Report Generation model that detects a set of abnormalities and verbalizes them via fixed sentences, which is much simpler than other state-of-the-art NLG methods and achieves better results in medical correctness metrics. We benchmark our model in the IU X-ray and MIMIC-CXR datasets against naive baselines as well as deep learning-based models, by employing the Chexpert labeler and MIRQI as clinical correctness evaluations, and NLP metrics as secondary evaluation. We also provide further evidence indicating that traditional NLP metrics are not suitable for this task by presenting their lack of robustness in multiple cases. We show that slightly altering a template-based model can increase NLP metrics considerably while maintaining high clinical performance. Our work contributes by a simple but effective approach for chest X-ray report generation, as well as by supporting a model evaluation focused primarily on clinical correctness metrics and secondarily on NLP metrics.


134 visualizaciones Ir a la publicación

2022, Publisher: ACM Computing Surveys, Link>

AUTHORS

Pablo Messina, Marcelo Andia, Pablo Pino, Sergio Uribe, Álvaro Soto, Denis Parra, Cecilia Besa, Claudia Prieto, Cristian Tejos, Daniel Capurro

ABSTRACT

Every year physicians face an increasing demand of image-based diagnosis from patients, a problem that can be addressed with recent artificial intelligence methods. In this context, we survey works in the area of automatic report generation from medical images, with emphasis on methods using deep neural networks, with respect to: (1) Datasets, (2) Architecture Design, (3) Explainability and (4) Evaluation Metrics. Our survey identifies interesting developments, but also remaining challenges. Among them, the current evaluation of generated reports is especially weak, since it mostly relies on traditional Natural Language Processing (NLP) metrics, which do not accurately capture medical correctness.


96 visualizaciones Ir a la publicación

RL1, Publisher: , Link >

AUTHORS

Júlio Barreto Guedes da Costa, Leandro Balby Marinho, Rodrygo LT Santos, Denis Parra

Embeddings are core components of modern model-based Collaborative Filtering (CF) methods, such as Matrix Factorization (MF) and Deep Learning variations. In essence, embeddings are mappings of the original sparse representation of categorical features (eg, user and items) to dense low-dimensional representations. A well-known limitation of such methods is that the learned embeddings are opaque and hard to explain to the users. On the other hand, a key feature of simpler KNN-based CF models (aka user/item-based CF) is that they naturally yield similarity-based explanations, ie, similar users/items as evidence to support model recommendations. Unlike related works that try to attribute explicit meaning (via metadata) to the learned embeddings, in this paper, we propose to equip the learned embeddings of MF with meaningful similarity-based explanations. First, we show that the learned user/item …


82 visualizaciones Ir a la publicación