Publicaciones

Evangelos Milios

RL5, Publisher: IET, Link>

AUTHORS

Evangelos Milios, Fernanda Weiss, Marcelo Mendoza

ABSTRACT

The automatic detection of rumors in social networks has gained considerable attention from researchers and practitioners during the last decade, due to the consequences of the spread of disinformation in public opinion. Most of the existing methods make use of features extracted from conversational threads, user profiles, and structural information of the network. These features are difficult to capture in practice and are often only partially available during the spread of rumors. In this paper, we study an unexplored approach in rumor detection: time series classification (TSC). By modeling the problem using time series, we avoid using lexical or structural characteristics of the network. Instead, we use information that is simpler to capture, such as the volume of tweets and the number of followers and followees of the users involved in a story. In this way, the characterization of the story is not related to specific users, but to variables aggregated at the event level.We introduce a TSC-based model for detecting rumors based on hypergraph partitioning, aligning time series prototypes with rumor classes. Our approach uses a Siamese network to train a rumor detection model in a supervised way, minimizing the distance between the time series of the training examples and the prototypes of their class. Results on benchmark data show that our approach surpasses other TSC-based methods in detecting rumors. Also, we compare our methods performance with methods that make use of lexical and structural characteristics. Our experiments show that our method has advantages in time-sensitive contexts, outperforming the state of the art in early detection scenarios with incomplete information.


20 visualizaciones Ir a la publicación

RL5, Publisher: arXiv, Link>

AUTHORS

Evangelos Milios, Ignacio Tampe, Marcelo Mendoza

ABSTRACT

Summarization has usually relied on gold standard summaries to train extractive or abstractive models. Social media brings a hurdle to summarization techniques since it requires addressing a multi-document multi-author approach. We address this challenging task by introducing a novel method that generates abstractive summaries of online news discussions. Our method extends a BERT-based architecture, including an attention encoding that fed comments' likes during the training stage. To train our model, we define a task which consists of reconstructing high impact comments based on popularity (likes). Accordingly, our model learns to summarize online discussions based on their most relevant comments. Our novel approach provides a summary that represents the most relevant aspects of a news item that users comment on, incorporating the social context as a source of information to summarize texts in online social networks. Our model is evaluated using ROUGE scores between the generated summary and each comment on the thread. Our model, including the social attention encoding, significantly outperforms both extractive and abstractive summarization methods based on such evaluation.


20 visualizaciones Ir a la publicación

Pulisher:, Link>

AUTHORS

Evangelos Milios, Ignacio Tampe, Marcelo Mendoza

ABSTRACT

Summarization has usually relied on gold standard summaries to train extractive or abstractive models. Social media brings a hurdle to summarization techniques since it requires addressing a multi-document multi-author approach. We address this challenging task by introducing a novel method that generates abstractive summaries of online news discussions. Our method extends a BERT-based architecture, including an attention encoding that fed comments’ likes during the training stage. To train our model, we define a task which consists of reconstructing high impact comments based on popularity (likes). Accordingly, our model learns to summarize online discussions based on their most relevant comments. Our novel approach provides a summary that represents the most relevant aspects of a news item that users comment on, incorporating the social context as a source of information to summarize texts in online social networks. Our model is evaluated using ROUGE scores between the generated summary and each comment on the thread. Our model, including the social attention encoding, significantly outperforms both extractive and abstractive summarization methods based on such evaluation.


20 visualizaciones Ir a la publicación

RL1, Publisher:, Link>

AUTHORS

Axel J Soto, Denis Parra, Evangelos Milios, Dorota Glowacka, Fernando V Paulovich, Osnat Mokryn

ABSTRACT

This is the fourth edition of the Workshop on Exploratory Search and Interactive Data Analytics (ESIDA). This series of workshops emerged as a response to the growing interest in developing new methods and systems that allow users to interactively explore large volumes of data, such as documents, multimedia, or specialized collections, such as biomedical datasets. There are various approaches to supporting users in this interactive environment, ranging from developing new algorithms through visualization methods to analyzing users’ search patterns. The overarching goal of ESIDA is to bring together researchers working in areas that span across multiple facets of exploratory search and data analytics to discuss and outline research challenges for this novel area.


13 visualizaciones Ir a la publicación