Mukesh Prasad

RL1, Publisher: Multimedia Tools and Applications, Link>


Xian Tao, Jie Yang, Mukesh Prasad, Ku Young Young, Eric Juwei Cheng, Domingo Mery, Ding Rong Zheng, Chin Teng Lin


This paper proposes a novel online self-learning detection system for different types of objects. It allows users to random select detection target, generating an initial detection model by selecting a small piece of image sample and continue training the detection model automatically. The proposed framework is divided into two parts: First, the initial detection model and the online reinforcement learning. The detection model is based on the proportion of users of the Haar-like features to generate feature pool, which is used to train classifiers and get positive-negative (PN) classifier model. Second, as the videos plays, the detecting model detects the new sample by Nearest Neighbor (NN) Classifier to get the PN similarity for new model. Online reinforcement learning is used to continuously update classifier, PN model and new classifier. The experiment shows the result of less detection sample with automatic online reinforcement learning is satisfactory.

83 visualizaciones Ir a la publicación

RL1, Publisher:, Link>


Mukesh Prasad, Muhammad Saqib, Kunal Chaturvedi, Domingo Mery, Dinesh Kumar Vishwakarma, Ali Braytee


With the recent surge in threats to public safety, the security focus of several organizations has been moved towards enhanced intelligent screening systems. Conventional X-ray screening, which relies on the human operator is the best use of this technology, allowing for the more accurate identification of potential threats. This paper explores X-ray security imagery by introducing a novel approach that generates realistic synthesized data, which opens up the possibility of using different settings to simulate occlusion, radiopacity, varying textures, and distractors to generate cluttered scenes. The generated synthetic data is effective in the training of deep networks. It allows better generalization on training data to deal with domain adaptation in the real world. The extensive set of experiments in this paper provides evidence for the efficacy of synthetic datasets over human-annotated datasets for automated X-ray security screening. The proposed approach outperforms the state-of-the-art approach for a diverse threat object dataset on mean Average Precision (mAP) of region-based detectors and classification/regression-based detectors.

72 visualizaciones Ir a la publicación