Publicaciones

Sergio Uribe

2022, Publisher: ACM Computing Surveys, Link>

AUTHORS

Sergio Uribe, Pablo Pino, Pablo Messina, Marcelo Andia, Denis Parra, Daniel Capurro, Cristian Tejos, Claudia Prieto, Cecilia Besa, Álvaro Soto

ABSTRACT

Every year physicians face an increasing demand of image-based diagnosis from patients, a problem that can be addressed with recent artificial intelligence methods. In this context, we survey works in the area of automatic report generation from medical images, with emphasis on methods using deep neural networks, with respect to: (1) Datasets, (2) Architecture Design, (3) Explainability and (4) Evaluation Metrics. Our survey identifies interesting developments, but also remaining challenges. Among them, the current evaluation of generated reports is especially weak, since it mostly relies on traditional Natural Language Processing (NLP) metrics, which do not accurately capture medical correctness.


26 visualizaciones Ir a la publicación

RL1, Publisher: Computers in biology and medicine, Link >

AUTHORS

José Rodríguez-Palomares, Sergio Uribe, Rodrigo Salas, Pamela Franco, Lydia Dux-Santoy, Julio Sotelo, Domingo Mery, Arturo Evangelista, Andrea Guala

Abstract: Recent advances in medical imaging have confirmed the presence of altered hemodynamics in bicuspid aortic valve (BAV) patients. Therefore, there is a need for new hemodynamic biomarkers to refine disease monitoring and improve patient risk stratification. This research aims to analyze and extract multiple correlation patterns of hemodynamic parameters from 4D Flow MRI data and find which parameters allow an accurate classification between healthy volunteers (HV) and BAV patients with dilated and non-dilated ascending aorta using machine learning. Sixteen hemodynamic parameters were calculated in the ascending aorta (AAo) and aortic arch (AArch) at peak systole from 4D Flow MRI. We used sequential forward selection (SFS) and principal component analysis (PCA) as feature selection algorithms. Then, eleven machine-learning classifiers were implemented to separate HV and BAV patients (non- and dilated ascending aorta). Multiple correlation patterns from hemodynamic parameters were extracted using hierarchical clustering. The linear discriminant analysis and random forest are the best performing classifiers, using five hemodynamic parameters selected with SFS (velocity angle, forward velocity, vorticity, and backward velocity in AAo; and helicity density in AArch) a 96.31 ± 1.76% and 96.00 ± 0.83% accuracy, respectively. Hierarchical clustering revealed three groups of correlated features. According to this analysis, we observed that features selected by SFS have a better performance than those selected by PCA because the five selected parameters were distributed according to 3 different clusters. Based on the proposed method, we concluded that the feature selection method found five potentially hemodynamic biomarkers related to this disease.

22 visualizaciones Ir a la publicación